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This paper discusses automatic detection and expZoitution of 
embedded structure i n  Large-Scale Linear Programming (LPI models. 
We report experiments with real-Zife LP and mixed-integer ( N I P )  
models i n  which various methods are developed and tested as 
integraZ modules o f  an optimization system o f  advanced design 
[61. We seek t o  understand the modeling implications of these 
embedded s t m t m e s  as weZZ as to exploit  them dming actual 
optimization. The l a t t e r  goal pZaces heavy emphasis on e f f i -  
cient, as weZZ as e f fec t ive ,  identi f icat ion techniques for 
economic application t o  large mode 2s. Several (po ZynomiaZZy 
compZex) heuristic aZgorCthms are presented from our work. In 
addition, bounds are developed for the maximum row dimension of 
the various factorizations. mese bounds are useful for objec- 
t ive  Zy estimating the quality of heuxisticaZZy derived 
s true tures . 

I. INTRODUCTION 

Automatic detection and exploi ta t ion of spec i a l  s t ruc tu re  i n  

, large-scale LP (o r  MIP) models has been the  subjec t  of a con- 

t inuing research program conducted a t  pe Naval Postgraduate 

School and UCLA over the  p a s t  decade. This paper draws from 

various r e su l t s  i n  t h i s  e f f o r t ,  and r e f e r s  (sparingly) t o  signi-  

f i can t  work by other  researchers.  The references contain com- 

p l e t e  descriptions of these r e s u l t s  f o r  t he  in te res ted  reader. 
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3 70 GERALD G. BROWN AND WILLIAM G. WRIGHT 

O u r  scope i s  in t en t iona l ly  l imited t o  automated methods of 

su f f i c i en t  eff ic iency to enable us t o  economically apply them t o  

real-world optimiZation problems. Thus, we consider only those 

approaches showing g rea t e s t  promise fo r  immediate p rac t i ca l  

application.  Although the in te rpre ta t ions  of embedded model 

s t ruc ture  can lend profound ins igh ts  i n  t h e i r  own r igh t ,  w e  a r e  

equally in te res ted  i n  detect ing erroks i n  data preparation and 

model generation --mathematically mundane i ssues  of fundamental 

importance t o  the  prac t i t ioner .  

The sheer s i z e  of contemporary large-scale LP models pre- 

sents s ign i f i can t  computational d i f f i c u l t i e s ,  even f o r  otherwise 

elementary factor izat ions .  Implementation of e f f ec t ive  s t ruc-  

t u r a l  analysis  procedures i s  primarily a matter of exercising 

large-scale data s t ruc tu re s  e f f i c i en t ly .  As we s h a l l  see,  

though, these p r a c t i c a l  considerations can give s ign i f i can t  

theore t ica l  guidance i n  the  spec i f ica t ion  of e f f i c i e n t l y  

achievable c lasses  of model transformations. 

That detection of embedded spec ia l  s t ruc tu re  can be of 

p rac t i ca l  importance i n  ac tua l  model solut ion i s  undisputed. It  

is  widely known t h a t  e x p l i c i t  simplex operations can be 

materially improved i n  eff ic iency by incorporation of bas i s  

factor izat ion methods (e.g., [ 6 ] ,  [9], and references of [7]). 

The d e t a i l s  of such modifications of t h e  simplex procedure a r e  

not given here. However, t he  underlying themes of simplex fac- 

to r iza t ion  a re  the  subs t i tu t ion  of l og i c  f o r  f l oa t ing  point 

ari thmetic,  and separation of the  apparent problem monolith i n t o  

m r e  manageable components. 

This paper deals  exclusively with row factor izat ions .  The 
4 

pervasive implied problem fo r  row fac tor iza t ion  is the  iden t i f i -  * 
cation of  the  best embedded s t ruc ture  from a l l  those t h a t  may 

l i e  a t  hand i n  any p a r t i c u l a r  model. Conventional wisdom 

d i f f e r s  as  t o  the  c r i t e r i o n  f o r  this discrimination among fac- 

to r iza t ions  of t h e  same c lass .  However, it is generally 
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accepted t h a t  the  row dimensionality of the  fac tor iza t ion  serves 

as  an excel lent  measure of effectiveness.  In  t h i s  sense, 

embedded spec ia l  s t ruc tu re s  f a l l  na tura l ly  i n t o  a taxonomy 

implied by the i n t r i n s i c  complexity of the  associated maximum 

row ident i f ica t ion  problems. 

We proceed with a discussion of several  types of embedded 

spec ia l  s t ruc tures  detectable  by e f f i c i e n t  polynomially complex 

algorithms. These s t ruc tu re s  a r e  considered i n  increasing order 

of maximum row iden t i f i ca t ion  complexity. We emphasize t h a t  

efficient polynomial algorithms a r e  operationally defined here 

a s  low-order polynomial i n  terms of i n t r i n s i c  problem dimensions 

(e.g., number of rows, columns, and non-zero elements), and not. 

i n  terms of the t o t a l  volume of  model information (e.g. ,  t o t a l  

number of b i t s  i n  a l l  coef f ic ien ts ,  ad nauseam) . 

2. SIMPLE REDUCTIONS 

LP models of ten exhib i t  simply detected s t r u c t u r a l  charac- 

t e r i s t i c s  which permit a reduction i n  row dimensionality without 

loss  of model information. Several such reductions a r e  possible  

i n  evidently polynomial complexity. These include: 

a)  Void Rows . 

b) Void Columns 

c) Singleton Rows (simple upper bounds) 

d) Singleton Columns 

e )  Fixed Variables - 

f )  Rows t h a t  F i x  Variables 

g) Null Variables 

h) Non-extremal Variables 
* 

i) Redundant Rows. 

Some of  these reductions do not obviously decrease row 

dimension. However, the  reductions may be applied repeatedly t o  

the model, revealing a t  each i t e r a t i o n  more rows which can be 
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removed. Thus the cyc l ic  application of reductions continues 

u n t i l  a minimal model r e su l t s .  

Experiments with some of these reductions have been reported 

by Brearley, Mitra and W i l l i a m s  [5]. More extensive work a t  

large-scale has been done by Bradley, B r o w n  and Graves [3] and 

by Krabek [ l l ] .  

Detection of aZZ redundant LP rows requires  complete solu- 

t i on  of equivalent LP problems, and i s  thus equivalent i n  

complexity t o  LP. ( W e  h e s i t a t e  t o  say polynomial i n  the sense 

of Khachian's recent r e s u l t . )  Thus, we r e s t r i c t  redundant row 

detection t o  orthogonaz redundancy, revealed by subs t i tu t ion  of 

bounds fo r  problem var iables .  An e f f i c i e n t  detect ion algorithm 

resu l t s .  

With r ea l - l i f e  LP and MIP models, a remarkably la rge  frac- 

t i on  of model rows can be removed by these simple techniques. 

For some cases, models have been nearly soZved t h i s  way. 

We note t h a t  i n t e g r a l i t y  conditions can be superimposed on 

these simple reductions (e.g., t ighten bounds on integer  vari-  

ables by truncation) t o  strengthen them. Nonlinear models a l so  

benef i t  from these reductions, and from others  not  addressed i n  

t h i s  paper. 

Table 1 contains the charac te r i s t ics  of several  r ea l - l i f e  

l i n e a r  and mixed in teger  models. Table 2 displays the  r e s u l t s  

of simple reductions applied t o  these models [3]. Multiple 

passes a re  made f o r  each model u n t i l  no more reductions a r e  

possible.  The times :given a r e  f o r  execution on an IBM 360/67 s 

using FORTRAN H (Extended) without code optimization. 

3.  GENERALIZED UPPER BOUNDS 
t 

Rows f o r  which each column has a t  mst one non-zero coeffi-  

c ien t  ( r e s t r i c t ed  t o  those rows) co l lec t ive ly  form a generalized 

upper bound (GUB) s e t .  Usually, we addi t ional ly  require t h a t  
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TABLE 1. S q Z e  LP ( M I P I  Models 

Co Zwrms 
Ion-zero 

Mode Z Rows To taZ Integer Coefficients 

TRUCK 220 4,752 4,752 30,074 

FOAM 1,000 4,020 4 2 13,083 

AIRLP 1 71 3,040 - 0  6,023 

ELEC 785 2,800 0 8,462 

0 DSAS 4,648 4,683 0 30,520 

LAIC 1,236 1,425 0 22,028 

FERT 606 9,024 0 40,484 

COAL 171 3,753 0 7,506 

CUPS 361 582 145 1,341 

PAD 695 3,934 0 13,459 

JCAP 2,487 3,849 560 9,510 

PRPER 3,529 6,543 0 32,644 

N E l T M G  90 177 114 3 75 

PIES 663 2,923 0 13,288 

GAS 799 5,536 0 27,474 

PILOT 976 2,272 0 13,057 

the coef f ic ien ts  i n  these rows be capable of being rendered t o  

+1 by simple row o r  column scaling.  

The problem of iden t i fy ing  a GUB set of m m i m  row dimen- 

s ion is NP-hard [7], making optimal GUB fac tor iza t ion  algorithms 

hopelessly i n e f f i c i e n t  f o r  our purposes. Heuris t ics  adapted 

from work by Graves and by Senju and Toyoda (see [14], and 

references of [5] and 171) work very e f fec t ive ly  and dependably 

a t  large-scale t o  f i nd  maximal GUB se t s .  

Unfortunately, t he  problem of determining ju s t  the size of 
d 

the maximum GUB s e t  is  a l so  NP-hard. However, Brown and Thomen 

[7] have developed bounds on the s i z e  of the  maximum GUB s e t  

which a re  sharp and e a s i l y  computed. These bounds have been 

used t o  show, i n  some cases, t h a t  maximum GUB s e t s  have been 



TABLE 2. Simple Reduct ions  [ 3 ]  

Mode2 

TRUCK 

FOAM 

AIRLP 

ELEC 

ODSAS 

LANG 

FERT 

COAL 4 

CUPS 

PAD 

JCAP 

PAPER 

NETTING 

PIES 

GAS 

PILOT 

SingZe ton 
C o Z m s  Rows 

0 0 

0 3 6 

0 0 

56 120 

40 0 

220 68  

0 0 

0 0 

49 18  

30 16 

41 4 277 

190 9 0 

1 29 

5 0 16 

6 0 31 

123 12 

Doub Zeton 
Equations 

0 

0 

0 

3 

3,609 

9 

0 

0 

39 

Redundant 
Rows 

1 

0 

0 

1 4  

4 0 

55 

13 

0 

55 

Passes 

2 

2 

2 

4 

3 

20 

4 : 

2 

4 
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achieved v i a  heu r i s t i c  methods, In  any case, the  bounds provide 

excel lent  object ive measure of t he  qua l i ty  of any GUB s e t ,  

regardless of the  means of  i ts  derivation.  Frequently, manual 

GUB analysis w i l l  s u f f i ce  f o r  models with amenable s t ruc ture .  

The bounds a re  developed i n  terms of the  number of d i s t i n c t  

confZicts present i n  the  model. Two rows a r e  i n  con f l i c t  i f  

-. they each have a non-zero element i n  a conk& column, making 

them mutually exclusive i n  a GUB s e t .  I f  si i s  the number of  

P rows i n  con f l i c t  with row i , then the t o t a l  problem conf l i c t  

count fo r  a model with m rows is 

A problem-independent bound on the s i z e  of the maximum GUB 

s e t  is  [ 7 ]  

where L i nwca te s  truncation t o  an integer .  

A t i gh t e r ,  problem-dependent bound is  

where 

y = max s 
i 

i '  

Tighter upper bounds 
a 

maximum GUB s e t ,  as  well  

Table 3 contains the  
9 

have been derived f o r  the  s i z e  of the 

a s  lower bounds. 

r e s u l t s  of automatic GUB factor izat ion 

applied t o  the  benchmark models [ 7 ] .  Row e l i g i b i l i t y  i s  based * 
on the capabi l i ty  t o  s ca l e  t he  row t o  contain only 0 , + 1 

coeff ic ients .  GUB quality i s  the  number of GUB rows found, 

expressed as  a percentage of  the  bes t  known upper bound on maxi- 

mum GUB row dimension (ac tua l  GUB qua l i ty  may be b e t t e r  than 



TABLE 3. GUB F a c t o r i z a t i o n  [ 7 ]  

Row Conf  Zicts GUB 
ROMS-GUB 

Mode Z E l i g i b l e  Coun t  D e n s i t y  R m s  Q w z Z i W  SEC 

TRUCK 

FOAM 

AIRI;P 

ELEC 

ODSAS 

LANG 

COAL 

CUPS 

PAD 

JCAP 

PAPER 

NETTING 

PIES 

GAS 

PILOT 
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t h i s  conservative es t imate) .    he r e s u l t s  were obtained using 

FORTRAN H (Extended) with code optimization. 

4. IMPLICIT NETWORK ROWS 

Implic i t  network rows a re  a s e t  of rows f o r  which each 

column has a t  most two non-zero coef f ic ien ts  ( r e s t r i c t ed  t o  

those rows) and f o r  which columns with two non-zero coeff ic ients  

1 ( i n  those rows) can be converted by simple row and column 

scal ing such t h a t  the  non-zero coef f ic ien ts  have opposite sign. 

Such rows i n  LP a r e  commonly ca l led  networks with gains. 

Pure network rows (NET) can be converted by simple row and 

column sca l ing  such t h a t  a l l  non-zero coef f ic ien ts  ( r e s t r i c t ed  

t o  those rows) have value + 1 , and such t h a t  columns with two 

non-zero coeff ic ients  ( i n  those rows) have one +1 and one -1. 

Such rows i n  LP a r e  ca l led  pure networks (e.g., [ 4 ] ) .  

S i m ~ l e  row and column sca l ing  is r e s t r i c t e d  such t h a t  

application of each sca l e  f ac to r  renders an e n t i r e  row, o r  

column, t o  the desired s ign (and u n i t  magnitude f o r  pure NET). 

The problem of ident i fying a NET fac tor iza t ion  of mai???w?I 

row dimension is  NP-hard [ l5 ] ,  making optimal NET iden t i f ica t ion  

algorithms prac t ica l ly  useless.  The problem of determining j u s t  

the size of the maximum NET s e t  i s  a l so  NP-hard. Thus, heuris- 

t i c  iden t i f ica t ion  methods a r e  mandated. 

An extension of GUB heu r i s t i c s  can be used t o  achieve NET 

I factor izat ions .  F i r s t ,  a GUB s e t  i s  determined by methods men- 
, , 

tioned i n  Section 3 .  Then, a second GUB s e t  i s  found from an 

e l i g i b l e  subset of remaining rows. The second GUB s e t  is  con- 
1 

ditioned such t h a t  i ts  row members must possess non-zero coeffi-  

c ien ts  of opposite s ign i n  each c o l d  f o r  which the  p r i o r  GUB 

s e t  has a non-zero coeff ic ient .  

This double-GUB (DGUB) fac tor iza t ion  y i e ld s  a bipartite NET 

factorization.  Thus, DGUB heu r i s t i ca l ly  seeks the maximum 



Let A =  [ a . . ]  be an m x n  ma t r ixwi th  a = O , + l ' d  i , j .  
1 3  i j 
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embedded transportation o r  assignment row fac tor iza t ion .  Pure 

network equivalents derive from proper ed i t ing  of e l i g ib l e  rows. 

Generalizing on the  theme of Senju and Toyoda [14], a more 

general method has been developed by Brown and Wright [8] f o r  

d i r ec t  NET fac tor iza t ion  of impl ic i t  network rows. Pure NET 

rows can be iden t i f i ed  with t he  same procedure by simple 

screening of admissible candidate- rows. - - 

This heu r i s t i c  i s  designed t o  perform a network factoriza- 

t ion  of a signed elementary matrix 0 e n t r i e s  only).  It i s  

a delet ion heu r i s t i c  which i s  f e a s i b i l i t y  seeking. The measure 

of i n f e a s i b i l i t y  a t  any point  i s  a matrix penalty computed a s  

the  sum of individual row penal t ies .  The algorithm i s  two- 

phased, one pass, and non-backtracking. The f i r s t  phase y ie lds  

a feas ib le  s e t  of rows, while t he  second phase attempts t o  

improve the  s e t  by reincluding rows previously excluded. Each 

i t e r a t i o n  i n  Phase I e i t h e r  deletes  a row o r  r e f l e c t s  it 

(multiplies it by -1 ) and guarantees t h a t  t he  matrix penalty 

w i l l  be reduced. Thus, t h e  number of i t e r a t i o n s  i n  Phase I i s  

bounded by the i n i t i a l  value of t he  matrix penalty,  which is 

polynomially bounded. 

Probhn: Find a matrix N = Ini j] with (m - k) rows and n 

columns which is  derived from A by 

1. Deleting k rows of A where k - > 0 , 
2. Multiplying zero o r  more rows of A by -1, 

where N has t h e  property t h a t  each column of N has a t  most 

one +1 element and a t  most one -1 element. We wish t o  f ind  

a "large" N i n  t he  sense of containing as  many rows a s  

possible,  i .e . ,  minimize k . 5% 
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Terminology and Notation: 

1. E is  the  set of row indices f o r  rows e l i g i b l e  fo r  

inclusion i n  N and i s  ca l led  the  e l i g i b l e  s e t .  

2. C i s  the  s e t  of row indices fo r  rows removed from E 

i n  Phase I (Deletion). Some rows i n  C may be readmitted t o  

E i n  Phase 11. C i s  ca l led  the  candidate s e t .  

3 .  The phase " r e f l e c t  row if 6f A " means t o  multiply each 

element i n  row i' by -1 , i . e . ,  a + - a , ,  
i ' j  

t l j .  
1 j 

4 .  Other notation w i l l  be defined i n  the  algorithm i t s e l f .  

Algorithm 

Phase I - Deletion o f  Infeasible Rows 

Step 0: Ini t ial izat ion.  Set  E = 1 2  . . . m  C = 4 . 
For each column j of  A compute the  + penalty ( K t )  and 

3 
the - penalty (K;) a s  follows: 

These penal t ies  represent  the  number of excess +1- and -1 

elements, respectively,  i n  column j which prevent the  rows 

whose indices remain i n  E from f o k n g  a va l id  N matrix. A 
+ 

penalty value of -1 f o r  K . (KT) indicates  t h a t  the column 
I 1  

does not  contain a 1 1 element. 

Step 1: Define rozj penalties. For every i € E , compute 

a row penalty (p . )  a s  follows: 
1 

This i s  simply the sum of  + penal t ies  f o r  a l l  columns i n  which * 
row i has a +1 plus  the sum of - penal t ies  f o r  a l l  columns 

i n  which row i has a -1 . 
Step 2: Define matrix penalty. Compute the  penalty (h) f o r  

the  matrix by summing the  row penal t ies  a s  follows: 
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I f  h = 0 , then go to  Step 7. Otherwise, go to  step 3. 

Step 3: Row selection. Find the row i' E E with the 

greatest penalty, i .e . ,  

Find i' E E such that  pi, = max p 
i o  

i E E  

(If  there is a t i e ,  choose i' from among the t ied values.) 

Compute the reflected row penalty 5 for i' as follows: 
i ' - - C (KT +I)  + C + 

Pi' - ( K .  +1) . 
3 3 

j: a > O  j: a < O  
i ' j  i ' j  

This would be the row penalty for  row i ' i f  it were to be reflected. 

Step 4: Delete, or re f l ec t  row. 
- 

Case i) Pit 2 Pi' ~ e t  E -+ E - { i t }  , C + C U { i ' )  . 
Go to  Step 5. 
- 

Case ii) Pi' < Pit 

Step 5: Reduce colunm 

For a l l  j such that  

For a l l  j such tha t  

Go to Step 1. 

Step 6:  Change column 

Reflect row i '  . Go to  Step 6. 

penalties as follows : 
+ + 

a > O ,  K . + K  - 1 .  i ' j  3 j 
a < O f  K T + K - - 1 .  i l j  3 j 

penalties as follows : 

Using 'the a values af ter  reflection of row i ' , 
J + + 

For a l l  j 
such that a i l j  

> 0 ,  K .  -+ K .  + 1 and - 3 3 
K; -+ K; - 1 . 
J J + + 

For a l l  j such tha t  ail < 0 , K .  -+ K - 1 and 
3 j 

KT -+ KT + 1 . 
7 3 

Go to Step 1. * 
Phase 11 - Reinclusion of Rows from C 

Step 7: Eliminate conflicting rows. The rows with indices 

in  E , some possibly reflected from the original A matrix, 

form a valid N matrix. However, some of the rows removed from 
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E and placed i n  C may now be reincluded i n  E i f  they do not 

make h > 0 . Remove from C (and discard) a l l  row indices fo r  

rows which, i f  reincluded i n  E i n  present o r  re f lec ted  form, 

would make h > 0  . I .e. ,  remove i from C i f :  
+ 

a)  3 jl s u c h t h a t  a > O  and K = O  
i j ,  j, 

and 

b) 3 j 2  s u c h t h a t  a > O  and K = O  
i j ,  j, 

o r  a + 
i j  < O  and K = O .  

2 
j2 

I f  C = $I , STOP, otherwise go t o  Step 8. 

Step 8: Se lec t  row for reinczusion. A t  t h i s  point  a row 

from C may be reincluded i n  E . There a r e  several  possible 

schemes f o r  se lec t ing  the  row. After the row i s  reincluded, t he  

column penal t ies  a r e  adjusted. Then go t o  Step 7 .  

Modifications can be made t o  Step 0  t o  allow f o r  

1) Matrices including non- 0 ,+1 en t r i e s  and/or 2) Pre- 

specified network rows. The modifications are:  

1. E =  {i I a = 0 ,+1 f o r  a l l  j )  . 
ij 

2. Let P = { i  I row i i s  prespecified) . 
E + E - P  

+ 
After computation o f  K and K- , f i n d  f o r  a l l  j 

j j 
+ + 

i f  3 i E P such t h a t  aij = 1 then K -+ K + 1 , 
j j 

i f  3 i ~ p  
such that a i j  

= -1 then K, + K: + 1 . 
7 1 

A t  termination of t he  algorithm, the  rows i n  N a re  given by 
' B  

E U P .  
.o 

One eas i ly  obtained upper bound on the maximum row dimen- 

sion of the  network fac tor iza t ion  is: 

u = m - max (K: +K.) . 
1 i 3 3 



382 GERALD G. BROWN AND WILLIAM G. WRIGHT 

This bound i s  e a s i l y  computed and evidently sharp. I t  can 

be used t o  object ively eva l ia te  the qua l i ty  of a heu r i s t i ca l ly  

derived network factor izat ion.  The bound may a l so  be used t o  

preemptively terminate fac tor iza t ion  e f fo r t .  

Other bounds may be s imi la r ly  derived. 

Table 4 displays t h e  r e s u l t s  of DGUB and NET fac tor iza t ions  

of the  benchmark models. Row e l i g i b i l i t y  is determined by the 

capabi l i ty  t o  sca le  each row, by row sca l ing  alone, t o  contain 

only 0 , f l  en t r ies .  The NET qual i ty  is  the number of NET 

rows found, expressed a s  a percentage of the  upper bound on 

maximum NET row dimension given above (actual  NET qua l i ty  may be 

considerably b e t t e r  than t h i s  es t imate) .  

5. HIDDEN NEmORK ROWS 

Hidden network rows1 a re  a s e t  of rows which s a t i s f y  NET row 

re s t r i c t i ons  a f t e r  l i n e a r  transformation of the  model. That is, 

rea l iza t ion  of these (LNET) rows may require  a general l i n e a r  

transformation of  t he  o r ig ina l  model. 

The discrimination between imp l i c i t  and hidden network rows 

is  not (necessari ly) i n  t h e i r  use, bu t  r a the r  i n  t h e i r  detec- 

t ion.  The transformation group associated with imp l i c i t  network 

rows involves only permutations and simple scal ing of individual 

rows and columns. The hidden network rows require  a completely 

general l i nea r  transformation and p a r t i a l  ordering. Thus, 

iden t i f ica t ion  of  hidden networks requires s ign i f i can t  computa- 

t i on  jus t  t o  iden t i fy  e l i g i b l e  rows, s ince any given row may 

conf l i c t  with subsets of  i ts  cohorts a f t e r  transformation. 

This problem has been solved fo r  complete hidden network 

factor izat ion,  where a l l  rows a re  &own t o  be LNET o r  t he  algo- 

rithm f a i l s .  Bixby and Cunningham [2 ]  and Muslem [13] have 

'we have coopted the t e n  hidden from Bixby [ I ] ,  but h i s  
de f in i t ion  may not superf ic ial ly  appear t o  be equivalent. 



TXBLE 4. NET F a c t o r i z a t i o n  [ 8 ]  

Mode Z 

TRUCK 

FOAM 

AIRLP 

ELEC 

ODSAS 

LANG 

FERT 

9 COAL 

CUPS 

PAD 

JCAP 

PAPER 

NETTING 

PIES 

GAS 

PILOT 

DGUB 
Rows NET 

Rows 

47 

951 

150 

2 72 

31 7 

585 

5 72 

111 

251 

160 

8 74 

1,484 

54 

128 

682 

109 

SEC - 
8.40 

1.89 

0.41 

0.99 

3.39 

3.74 

6.03 

0.50 

0.29 

0.58 

2.50 

7.24 

0.07 

0.56 

5.00 

0.92 

NET 

Rows Q u a Z i t g  SEC 
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given polynomially complex methods f o r  complete LNET conversion. 

(The complete GUB problem is'polynomial as  well .)  

S t ra teg ica l ly ,  the  complete hidden LNET fac tor iza t ion  

requires two steps:  

Detection: necessary conditions f o r  existence of a complete 

LNET fac tor iza t ion  must be es tabl ished,  and 

Scaling: a l i nea r  transformation t o  achieve the  NET 

s t ruc tu re  must be determined, i f  one ex is t s .  

Cunningham and Bixby attempt detect ion,  followed by scaling.  

Musalem t r i e s  scal ing,  then detection.  This is a c ruc ia l  d i f -  

ference between methods, s ince problems which cannot be com- 

p le te ly  NET factor ized may f a i l  i n  e i t h e r  step.  

Briefly,  Cunningham and Bixby detect  by showing t h a t  the  

incidence matrix of t h e  model rows can be converted t o  a graphic 
R 

matroid. They employ a method by Tutte (see  references of [ 21 ) .  

Given success, t he  graphic record of the  detect ion is  used t o  

attempt t o  scaze t h e  model t o  NET, o r  t o  show t h a t  no such 

scal ing exis ts .  

Musalem scales t he  model t o  a +1 matrix, and then uses a 

method by Iri (see references of [13]) t o  bui ld  a t r e e ,  edge by 

edge, which reveals t h e  p a r t i a l  ordering coincident with com- 

p l e t e  hidden LNET factor izat ion.  

Both methods a r e  polynomially complex. However, complete 

LNET factor izat ion is  r e l a t i ve ly  expensive by e i t h e r  method i n  

t h a t  qu i te  a l a rge  amoung of r e a l  ari thmetic and logic  is  

required. Underlying data  s t ruc tures  have not  been suggested 

f o r  e i t he r  method. Both methods f a i l  i f  complete LNET factor- 

izat ion i s  impossible, and nei ther  leaves t he  invest igator  with 

much information useful  i n  salvaging a p a r t i a l  LNET factoriza- 

t ion.  We conjecture t h a t  r i s k  of preemptive f a i l u r e  narrowly 

favors t he  Musalem approach, s ince he defers  the r e l a t i ve ly  

involved detection step.  
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Locating a hidden LNET fac tor iza t ion  of maximal row dimen- 

sion has been suggested by Bixby [ l ]  and by Musalem [13], but  no 

concrete method i s  given and no computational t e s t i n g  i s  

reported. Evidently, the  m a x i m  LNET problem is  NP-hard, and 

i t s  maximal relaxation remains unsolved i n  the  p rac t i ca l  sense 

of t h i s  report. 

CONCLUSION 

The techniques reported here have been used with grea t  

success on a wide var ie ty  of l a rge  LP (MIP) models. The context 

of t h i s  research is cer ta in ly  a typ ica l  i n  t h a t  the  models which 

we work with a r e  o f t en  sen t  t o  us f o r  analysis  and solut ion pre- 

c i se ly  because they have already f a i l e d  elsewhere. In  these 

cases, our motives a r e  t o  quickly diagnose suspected trouble 

before optimization, prescr ibe remedies, and perform the ac tua l  

optimization r e l i ab ly  and e f f i c i en t ly .  

This has undoubtedly biased our view of s t r u c t u r a l  detection 

methods. Prac t ica l  considerations a r i s ing  from turnaround dead- 

l i n e s  and the spec i f i c  advantages of our own optimization system 

[6 ] have colored our judgment . Many provocative suggestions 

f o r  fur ther  research have not  been pursued, e i t h e r  due t o  lack 

of opportunity, t o  poor i n tu i t i on ,  o r  t o  sheer economics. 

Whether o r  not by equivalent prejudice,  Krabek [ l l ]  reports  some 

s imilar  methods f o r  simple reductions applied t o  l a rge  MIP's. 

A g rea t  deal of i n s igh t  has been gained from these experi- 
! 

ments. The cost  of fac tor iza t ion  i s  t r u l y  i n s ign i f i can t  

2 ~ e  X-system (XS) di f fers  i n  many ways from cZassicaZ 
large-sea l e  mathematical programring systems; it simuZtuneous Zy 
supports simple and generalized upper%ounds, general basis 
factorization, MP, nonlinear, and decomposition features . In  
addition, the fundamental LP algoKthm has been enhanced t o  
intrinsically  incorporate e l a s t i c  range restrict ions.  XS i s  
particularly suited for solution i n  limited time of large models 
with complicating features. 
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r e l a t i ve  to  the  information and (primarily) so lu t ion  eff ic iency 

gained thereby. Revelations have ranged from ou t r igh t  re jec t ion  

of absurd formulations t o  subt le  inferences on the in te r -  

personal conf l ic t s  of model proponents. Very few models f a i l  t o  

reveal some t o t a l l y  unsuspected s t ruc tu ra l  cur ios i ty .  Indeed, 

it is  of ten some minor aberration t h a t  proves most revealing. 

Sometimes, the combinedeffects ofseveral 'minorfeatures collec- 

t i ve ly  contribute t o  a discovery of s ign i f i can t  model a t t r ibutes .  

Our general operational guidelines has been t o  avoid heavy 

computational investment i n  factor izat ion.  Rather, highly 

e f f i c i e n t  methods a re  used repeatedly on var ia t ions  of each 

model. Manual and in tui t ive  analysis of these r e s u l t s  usually 

reveal much more than could be reasonably expected from any 

t o t a l l y  automated method applied t o  problems of exponential 

complexity. In te rac t ive  analysis  of large-scale models i s  

uncompromisingly challenging i n  a technical  sense and equally 

rewarding. 

Accordingly, w e  have not  ye t  implemented maximal hidden net- 

work heur i s t ics ,  o r  block-angular c lus te r ing  methods. In  the  

former case, we f ind  i n t r i n s i c  NET fac tor iza t ion  t o  unerringly 

reveal more general network forms. Also, reformulation t o  a NET 

factor izat ion c o m n l y  requires  more than a l i n e a r  transforma- 

t ion;  variables and constra ints  must frequently be augmented t o  

achieve the desired a r c  and node in te rpre ta t ion .  

I n  t he  case of block-angular and attendant s t ruc tures ,  w e  

require a grea t  deal  more information than row and column index 

subsets and aggregate r e l a t i ons  t o  develop an e f f ec t ive  and 

economically sensible  mathematical decomposition scheme; 

fur ther ;  even fo r  unfamiliar models such s t ruc tu re  is usually 
9 

apparent i n  those cases t h a t  i nv i t e  decomposition. 

For a more circumspect and less mechanical review of struc- 

t u r a l  in te rpre ta t ion  f o r  LP models, see  Greenberg [ lo ] .  From 

the standpoint of h i s  paper, the  techniques reported here a r e  

simply monadic functions of  analysis.  
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Large fac tor iza t ions  a r e  rout inely found as  i n t r i n s i c  fea- 

tures  i n  r ea l - l i f e  models. However, we f e e l  t h a t  it i s  an 

abominable pract ice  t o  proselyt ize  i n  favor of some pa r t i cu l a r  

model s t ruc tu re  a t  t he  expense of model realism o r  common sense. 

For instance, network models have recently received unpre- 

cedented a t ten t ion  i n  t he  l i t e r a t u r e .  The implication has of ten 

been t h a t  since networks a r e  usually found-in models, networks 

should be used as  the  exclusive model. This is, of course, 

patent  nonsense, smacking of a solution i n  search of a problem. 

An analyst  should view fac tor iza t ions  as  special izat ions  of 

models, ra ther  than forcing models t o  f i t  ce r ta in  popular fac- 

to r iza t ions  [4]  . 

We a re  deeply indebted t o  our colleagues Gordon Bradley and 

Glenn Graves, who have contributed fundamentally t o  t h i s  

research. David Thomen is  la rge ly  responsible f o r  the  GUB 

iden t i f ica t ion  material. 
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